Rheological Parameter Estimation for a Ferrous Nanoparticle-based Magnetorheological Fluid using Genetic Algorithms
نویسندگان
چکیده
This study examines identification of rheological parameters for a constitutive model characterizing the rheological behavior of a ferrous nanoparticle-based magnetorheological (MR) fluid. Particle size is nominally 28 nm and the MR fluid has a weight fraction of 27.5% Fe. A constant shear rate rheometer is used to measure flow curves (shear stress vs. shear rate), as a function of applied magnetic field, of an MR suspension of nanometer-sized iron particles in hydraulic oil. The MR fluid is characterized using both Bingham-plastic (BP) and Herschel–Bulkley (HB) constitutive models. These models have two regimes that can be characterized by a field-dependent yield stress: pre-yield implies that the local shear stress is less than the yield stress, and post-yield implies that the local shear stress is greater than the yield stress. Both models of MR fluid behavior assume that the MR fluid is rigid in the preyield regime. However, the post-yield behavior is different. The BP model assumes that the post-yield increase in shear stress is proportional to shear rate. However, the HB model assumes that the post-yield increase in shear stress is proportional to a power law of shear rate. Identification of the model parameters is complicated by model non-linearities, as well as variance in experimental data. The rheological parameters of the BP and HB models are identified using both a gradient-based least mean square minimization procedure, as well as a genetic algorithm (GA). The HB model is shown to represent better, the rheological behavior of the ferrous nanoparticle-based MR fluid. Also, the GA performs better than the gradientbased procedure in minimizing modeling error.
منابع مشابه
Optimal Design of Magnetorheological Fluid Damper Based on Response Surface Method
In this research, the effect of shape parameters such as number of magnet wire turns, spools, thickness of the gap, and pole length in a Magneto-rheological (MR) fluid damper is analytically investigated and the optimization of these parameters is done with response surface method (RSM) which is combined Neuro-Fuzzy method and Particle Swarm Optimization (PSO) algorithm. Since the electro-magne...
متن کاملMagnetorheological and Volumetric Properties of Starch and Polyethylene Glycol Solutions in the Presence of NiO Nanoparticles
The effect of NiO nanoparticles on the rheological and volumetric properties of dilute solutions of starch-NaOH-H2O, PEG400-PEG2000 and PEG400-PEG6000 were investigated. Achieve this aim requires to prepare the stable nanofluids. Therefore, nanoparticles of NiO were added to these solutions and dispersed by a shaker and an ultrasonic bath for making the homogeneous nanofluids. The UV-Vis spectr...
متن کاملSonderforschungsbereich 438 Modelling and Simulation of Rheological Fluid Devices Modelling and Simulation of Rheological Fluid Devices Contents 1 Introduction 1 2 Er and Mr Mechanisms and Fluid Properties 2 3 Phenomenological Models for Rheological Fluid Devices 4
Electroand magnetorheological uids are smart, synthetic uids changing their viscosity from liquid to semi-solid state within milliseconds if a su ciently strong electric or magnetic eld is applied. When used in suitable devices, they o er the innovative potential of very fast, adaptively controllable interfaces between mechanical devices and electronic control units. This paper gives an overvie...
متن کاملOptimization of Cement Spacer Rheology Model Using Genetic Algorithm (RESEARCH NOTE)
The primary cement job is a critical step in successful well completion. To achieve effective cementing job, complete mud removal from the annular is recommended. Spacer and flushers are used widely to achieve this goal. This study is about weighted cement spacer systems containing a surfactant package, weighting agent and rheological modifiers. Weighted spacer systems are utilized when a high ...
متن کاملAn experimental study on the effects of temperature and magnetic field strength on the magnetorheological fluid stability and MR effect.
In this study, the stability and rheological properties of a suspension of carbonyl iron microparticles (CIMs) in silicone oil were investigated within a temperature range of 10 to 85 °C. The effect of adding two hydrophobic (stearic and palmitic) acids on the stability and magnetorheological effect of a suspension of CIMs in silicone oil was studied. According to the results, for preparing a s...
متن کامل